
RECONSTRUCTION OF THE THERMAL CONDUCTIVITY COEFFICIENT 

FROM TIIE SOLUTION OF THE NOI~INEAR INVERSE PROBLEM 

E. A. Artyukhin UDC 536.24.02 

We consider the iteration algorithm for the solution of the nonlinear inverse 
problem of non-steady-state heat conduction. 

In the analysis of data on the non-steady-state thermophysical experiments, one has to 
solve the nonlinear inverse heat-conduction problems for the coefficients. In this case, one 
needs to determine the temperature dependence of one or several coefficients in the heat equa- 
tion from the results of temperature measurements at several points of the body in question 
[1]. 

Below we consider the nonlinear inverse problem for the coefficients in which we recon- 
struct the temperature dependence of the thermal conductivity coefficient from the tempera- 
ture data at one internal point of an infinite planar film. At the edge of the film, bound- 
ary conditions of the first kind are known. 

The inverse problem is formulated as follows. It is required to determine the func- 
tions T(x, z) and %(T) from the conditions 

C(T)--OT = 0 ( ~.(T) O~T 1 ,  O < x < b ,  O < ' ~ ' ~ m ,  (1)  
8"~ Ox ox / 

T(x ,  0 ) =  T O , O<~x<~b, 

T (0, "0 = '~, ( %  

T (b, 7) = % (~), 

T(d ,  "r) = f('~), O < d < b ,  

(2) 

(3) 

(4) 

(5) 

where C(T), ~i(~), ~2(~), and f(T) are known functions. The solution of the inverse problem 
(1)-(5) will be sought from the condition of the least rms deviation 

~m 

J =  ~ [T(d, .~, ~.(T))--f(.~)l~d.~.. 
0 

(6) 

Since Eq. (i) and the given boundary conditions of the first kind are homogeneous, the 
region of definition of the required function X(T) is known. We represent this region in the 
form of an interval D = [Tmin, Tmax]. The interval D will be divided into m equal parts, and 
we introduce the net 

w = {Th =- Tmi~ + kAT,  k = - -  2, - -1 . . . . .  m-}- 3; 

AT ---- (Tma x -- Tmin)/m}, 

�9 The unknown function ~(T) will be approximated by a B spline on the net w [2]: 

where 

m+l 

k = - - !  
(7) 

B h ( T ) = B o ( T - - k A T ) ;  
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1 
B0 (T) = [(T + 2AT)~ - -  4 (T + AT)$ + 6 (T)$ - -  4 (T - -  AT)~ + (T - -  2AT) $1; 

AT s 

( T - -  AT)$ = [max (0, T - -  Ar)p. 

Using r e p r e s e n t a t i o n  (7 ) ,  the  i n v e r s e  problem we have j u s t  fo rmula ted  reduces  to f i n d -  
ing (m + 3 ) -d imens iona l  v e c t o r  c o n s i s t i n g  of  the  pa ramete r s  X = { t -~ ,  t o , . . . ,  tm+~} from 
the condition of minimum functional (6), subject to restrictions (i)-(4). 

The iteration process of minimization of the functional (6) will be constructed on the 
basis of the gradient methods. In particular, we use the method of conjugate gradients 
which is sufficiently economical in the number of numerical calculations, and is very effec- 
tive for a wide class of response functions [3]. 

We obtain a formula for the calculation of the gradient of the functional (6). The 
boundary-value problem (1)-(4) will be represented as a heat-conduction problem for a two- 
layer infinite film with identical thermophysical properties of the layers, and an ideal 
contact between them. Using (7) we then find 

OTi 0 I { ~i~ ~ ,m+l I OTi ] 
C(T) a ~ - - 0 ~  [,k~.~ ~B~ ( T ) / - ~ - x  j ' 

x i _ ~ < x < X ~ ,  0 < ~ m ;  i =  1, 2; X o = O < X ~ = d < X ~ = b  , (8) 

Ti(x, 0 ) =  T O , X~_l~x~.~Xi,  

T i(0, ~ ) = % ( J ,  

T~ (d, ~) = T 2 (d, ~), 

(9) 

(i0) 

(ii) 

OT,(d, "r) _ OT2(d, T) (12) 
Ox Ox 

T~(b, T)= %(~). (13) 

Fol lowing [4] we w i l l  assume tha t  the  components of  the v e c t o r  ~ a c q u i r e  smal l  i n c r e -  
ments Alk, k = 1, 0 , . . . ,  m + 1. The t empera tu re  T(x,  r)  i s  then i n c r e a s e d  by d (x ,  T).  I t  
can be shown t h a t  in the  l i n e a r  approx imat ion ,  the  f u n c t i o n  # ( x ,  z) s a t i s f i e s  the  fo l l owing  
b o unda ry -va lue  problem: 

�9 m-~l  

+ 
Ox 2 Ox k--" dT / O T  ' h = - - I  ' - -  

m+l 

k = - - I  h=--i 

rn+  l 
or  dC -~ OZT~ AI.~Bh (T) ) ( OTi ~2 ,m-+4 

- o-v " '  0 7 (  + ' 

k = - - I  : - - 1  

X , _ l < x < X i ,  O<T~Wra, i =  1, 2, (14) 

@t(x, 0) = O, X~_ i<~x~X~ ,  (15) 

#i (0, ~) = 0, (16) 

~t(d, ~)----~(d, ~), (17) 

0~i(d, w) 0~, (d, T) 
- , ( 1 8 )  Ox Ox 

O~(b, ~) = O. 

The linear part of the increment of functional (6) has the form 

(19) 
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"r 

A J = 2  y IT(d, ~, ~-)--/(~)it~(d, ~)dT, 
0 

(20) 

We consider the boundary-value problem conjugate to problem (8)-(13): 

a , ~ ) i _  m+1 ) a2.~__~, i 
a~ (=hE)~kB~ (T) ax 2 '  C(T) 

X ~ _ i < x < X i ,  O < ~ c ~ ,  i =  1, 2, 

~ ( x ,  ,xm)= O, Xi_~ <~ x<~ Xl, 

~, (0, "0 = O, 

,~ (d, ,~) = ~ (d, ~), 

(21) 

(22) 

(23) 

(24) 

C, h~,~,hB~ (T) 'Ox 
(d, T) \ 

-] = 2 (T (d, T)-- f (x)), 
0x i 

(25) 

~h~(b, z)= O. 

The expression for the increment of functional (20) will be transformed as follows: 

(26) 

"~m m + l  

A J =  S ( 0*i(d' T)0x O*2(d'x))E%kBs~(T)dX'ox ' 
0 k = - - I  

or, using conditions (16), (17), and (24), 

d Z m m + l  b 'rra m + l   ro,, +S.f o, ---;S o. o, 
" -02L Ox k=-i 

0 0 d 0 

(27) 

Substituting relations (21), (14), 
tain, after some transformations, 

m + l  d 'rm 

r oar, [or, V As = ~ A~.{S S*, L--~: ",~(r) + ,-~x,  --~ - ] 
0 0 

(16)-(19), (23), and (24) into equality (27), we ob- 

b ~m 

.d 0 
(28) 

It follows from equality (28) that the formula for the components of the gradient vector of 
functional (6) has the form 

d ~rn b Tm 

J'h = r L--~-x2 B,~ (T) + t - ~ x  ] - - ~  J dxd'~ + •2 -~x~-- Bh (T) § \--~x ] - - ~  J dxdT, 
0 0 d 0 

[k---- - -1 ,  0 . . . . .  m + 1. (29) 

I f  the g r a d i e n t  of the t o t a l  f u n c t i o n a l  i s  known, one can c o n s t r u c t  an i t e r a t i o n  a l -  
gor i thm for  the s o l u t i o n  of the i nve r se  problem for  the c o e f f i c i e n t s .  According to the meth- 
od of  con juga te  g r a d i e n t s ,  the approximat ions  are  c o n s t r u c t e d  from the  formulas 

X~ +l  =X~§ avg,, k------1, 0 . . . . .  m +  1, p----O, 1 . . . . .  ( 3 0 )  

where 
g~ = _ j~(p) + G g ~  -1  ; 

m + l  " [ m@l 

P0 ----- 0, ~p = Z (J~(p)-J~(p-I))J~(p)i Z (j;(p))2. 
k=--I k=--I 
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The coefficient Up determines 
the condition 

In the present problem, the quantity Up can be estimated explicitly. 
e.g., [5]) that the following relation holds: 

I 

25 . . . . . . .  <- -i ........ 77 - ]  
- - -11 I /  / 
Ix --21 Z / 

. . . .  / - - -  _ _  /"<--- x/[ 
,/o - - i - - - - + t - - +  . . . .  , - - - -  

' )4 f i 

' o  o,z % o,8 ,~/T~ox 
F i g .  1o R e c o n s t r u c t i o n  o f  t h e  
t e m p e r a t u r e  d e p e n d e n c e  o f  t h e  
t h e r m a l  c o n d u c t i v i t y  c o e f f i -  
c i e n t  f o r  " e x a c t "  i n p u t  d a t a .  
C u r v e  1 shows  t h e  e x a c t  v a l u e s ,  
a n d  t h e  p o i n t s  2 a r e  t h e  r e c o n -  
s t r u c t e d  v a l u e s  (m = 3,  p = 2 5 ) .  

the step at the p-th iteration, and can be calculated from 

min J (~-p + r 
cr 

It can be shown (see, 

T m 

IT (d, T, f ,  ) - -  { (~)1 ~ (d, ~) d~ 
0 

-- (31) 
~ p  - -  mm 

j' [e (d, T)] 2 dm 

9 

The iteration process is now constructed as follows. The starting approximation of the 
required parameters is specified, and one solves problem (8)-(13). From the conjugate prob- 
lem (21)-(26), the calculated approximate temperature field is used to calculate the gradi- 
ent of the total functional from formulas (29). After solving the problem for increments 
(14)-(19), one determines the rate Up, and relations (30) are used to find the new approxi- 
mation. The process is subsequently repeated for the next approximation, etc. The process 
should be terminated according to the deviation [4], i.e., when the condition 

J~<6  2 
~ m  

S h o l d s ,  w h e r e  6 2 :  a i (~)dm i s  t h e  i n t e g r a l  e r r o r  o f  t e m p e r a t u r e  s p e c i f i c a t i o n  a t  p o i n t  x = 
0 

d ,  a n d  o f ( z )  i s  t h e  rms d e v i a t i o n  o f  t h e  i n p u t  t e m p e r a t u r e s .  

I t  s h o u l d  b e  n o t e d  t h a t  t h e  a b o v e  i n v e r s e  h e a t - c o n d u c t i o n  p r o b l e m  i s  i n c o r r e c t l y  f o r m u -  
l a t e d .  The effect of the incorrectness can manifest itself in the instability of the numeri- 
cal solution. To obtain stable results, one can use the principle of step regularization 
[i]. In this case, the regularity of the solution is achieved by decreasing the number of 
divisions of the temperature interval on which the required function I(T) is defined. 

The above algorithm for the reconstruction of the thermal conductivity coefficient from 
the non-steady-state temperature measurements was realized in the form of a compute r program 
which we have used to calculate a number of methodical examples. The boundary-value prob- 
lems (8)-(13), (14)-(19), and (21)-(26) were numerically solved using an implicit approxi- 
mation scheme. In the process of solution of the problem (8)-(13), we used iterations with 
respect to the coefficients [6]. Some of the obtained results are shown in Fig. i. 
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The boundary temperatures and the input data for the solution of the inverse problem 
were the temperatures obtained from the solution of the forward heat-conduction problem for 
boundary conditions of the second kind and a given thermal conductivity coefficient %(T) = 
0.5 + 2 T 2. The remaining input data were chosen as follows: q, = i, q2 = 0, C(T) = i, 
b = i, d = 0.5, and z m = i. 

In the spline approximation of the required function %(T) we made three divisions of 
the temperature interval [Tmin, Tmax]. The calculations wdre carried out on the difference 
net n x • n T = 20 • 20. For the 25 iterations we needed about 5 min of the processor time of 
the computer BESM-6. In this example, the problem was solved using exact data. The start- 
ing approximation for the heat-conduction coefficient was taken as a constant, and equal to 
%o = 0.75. The obtained results demonstrate the sufficiently high efficiency of the sug- 
gested algorithm. 

NOTATION 

T, temperature; C(T), volume heat capacity; %(T), thermal conductivity coefficient; x, 
d, and X, coordinates; T, time; b, right-hand boundary along x; ~m, duration of the process; 
fi(T), input temperatures; ~(x, r), temperature increment; %k, k = I, 0,..., m + i, parame- 
ters in the spline approximation of the function %(T); B(T), B spline; a and 8, parameters 
of the conjugate gradients method; J', gradient of the total functional; ~(x, T), conjugate 
variable; ~2, integrated error of the input data; and p, number of iterations. 
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CONDUCTIVITY OF MULTICOMPONENT HETEROGENEOUS SYSTEMS 

G. N. Dul'nev, B. L. Muratova, and V. V. Novikov UDC 536.2 

A method is proposed for calculating conductivity of a multicomponent hetero- 
geneous system, taking account of its structure. 

The conductivity A of a heterogeneous system is the coefficient in the linear relation 
between the average flux <]> and the average value of the gradient <V~> producing it" 

<1> = A<w> w> i TfTfo dV 

v 

(i) 

For local regions occupied by the i-th component the following relations are valid: 

= d v i o. (2) 

Methods o f  c a l c u l a t i n g  the  c o n d u c t i v i t y  o f  two-component  h e t e r o g e n e o u s  sy s t ems  as  a f u n c t i o n  
o f  the  c o n d u c t i v i t i e s  o f  the  components  A i and t h e i r  volume c o n c e n t r a t i o n s  have been  d e v e l -  
oped in  a d e q u a t e  d e t a i l  [1 ,  2 ] .  
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