RECONSTRUCTION OF THE THERMAL CONDUCTIVITY COEFFICIENT
FROM THE SOLUTION OF THE NONLINEAR INVERSE PROBLEM

E. A. Artyukhin UDC 536.24.,02

We consider the iteration algorithm for the solution of the nonlinear inverse
problem of non-steady-state heat conduction.

In the analysis of data on the non-steady-state thermophysical experiments, one has to
solve the nonlinear inverse heat-conduction problems for the coefficients. 1In this case, one
needs to determine the temperature dependence of one or several coefficients in the heat equa-
tion from the results of temperature measurements at several points of the body in question

(1].

Below we consider the nonlinear inverse problem for the coefficients in which we recon-
struct the temperature dependence of the thermal conductivity coefficient from the tempera-
ture data at one internal point of an infinite planar film. At the edge of the film, bound-
ary conditions of the first kind are known.

The inverse problem is formulated as follows. It is required to determine the func—
tions T(x, 1) and A(T) from the conditions

(xﬂgzzjl(uﬂéz>,m<m<h0<1<nm (1
0t Ox Ox

T(x, 0)=T,, 0<{x<b, (2)

T (0, 7)= ¢,(7), ()

T(b, 1) = (1), (4)

T, ©y=f(1), 0<d<b, (5)

where C(T), @i(1), ¢2(v), and f(t) are known functions. The solution of the inverse problem
(1)-(5) will be sought from the condition of the least rms deviation

Tm

J = S[T(d, 7, MT)) —f(D)Pdr. (6)

0

Since Eq. (1) .and the given boundary conditions of the first kind are homogeneous, the
region of definition of the required function A(T) is known. We represent this region in the
form of an interval D = [Tpin, Tmaxl. The interval D will be divided into m equal parts, and
we introduce the net

w:{Tk ::.Tmin—l‘kAT, k:—-2, ‘——1, e m+3;
AT = (Tmax_Tmin)/m}.

. The unknown function A(T) will be approximated by a B spline on the net w [2]:

m+1
MTY = X MBi(D), (7

E=—1
where

B, (T) = By (T — kATY;
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By(T) = A—T[<T+°AT)3—4(T+AT) +6(T) —4(T— AT) +(T —2AT) 3]

(T — AT)}, = [max (0, T—AT)P.

Using representation (7), the inverse problem we have just formulated reduces to find-
ing (m + 3)-dimensional vector consisting of the parameters X = {)d_;, Aoyesss Apt+:} from
the condition of minimum functional (6), subject to restrictioms (1)-(4).

The iteration process of minimization of the functional (6) will be constructed on the
basis of the gradient methods. 1In particular, we use the method of conjugate gradients
which is sufficiently economical in the number of numerical calculations, and is very effec-
tive for a wide class of response functions [3].

We obtain a formula for the calculation of the gradient of the functional (6). The
boundary~-value problem (1)-(4) will be represented as a heat-conduction problem for a two-
layer infinite film with identical thermophysical properties of the layers, and an ideal
contact between them. "'Using (7) we then find

m+1
T, d oT;
_ 9 (2‘ kauT))———],
ot Ox fand dax

X <x<<X;, 0<t<{s i=1, 2, Xy =0< X, =d<<X,=0, (8)
ﬂanzn’&4<x<Xn (9)
T4(0, 1) = (1), (10
Tu(d, ©) = Ty(d, ), an
oT\(d, 1) _ 9Ty(d, 1) 12)
Ox ox ’
T2(b5 T) — (PZ(T)' (13)

Following [4] we will assume that the components of the vector A acquire small incre-
ments Ay, k = 1, 0,..., m + 1. The temperature T(x, 1) is then increased by #(x, 7). It
can be shown that in the linear approximation, the function $(x, 1) satisfies the following
boundary-value problem:

Cc(Ty —— (mil: By, (T)) ax (”:;1 M df;) ax +
/ B=—
+ ‘

m--1

m--1
02T, dB oT; \? v d4?B
i A k i Y h)__
+[ o (;_! " dr )+( o ) <h£'_‘1 "are

_Ej“ﬁ]ﬁiJr T (mVAkak(T)) ( ) (i dB’* )

ot dT 0x2 ké._l

X <x<X;, 0<v< T, i=1,2, ' (14)
B (x, 0)=0, X; <<x<C X, (15)
9:(0, 1) =0, (16)
®1(d, )= 0:(d, ), (17)

a’ﬁ'i(d’ T) — aﬂz (d’ T)
. Ox. - Ox " (18)
9:2(b, 1) =0. (19)

The linear part of the increment of functional (6) has the form

1055



A =2 [T, © H— () 0(d, v)dv. (20
0

We consider the boundary-value problem conjugate to problem (8)-(13):

o) 2~ (}‘kakm) La /0y

h=—1

Xi_1<x<Xi, O<¢'<$m, i=1, 2, (2D
Y (2, ) =0, X, <x <X, (22)
P (0, ) =0, (23)
Pi(d, 7) = (d, 7), (24)
& i (d, 1) Ay(d, )

(Y 1o ) (P — 28D ) —ar, 9 oy, (25)

= 4
(b, ) =0, (26)

The expression for the increment of functional (20) will be transformed as follows:

Tm

m--1
— 0P (d, T)  O(d, 7) ‘
M= 5 ( ox o ) D ba(D)d,

0 h==—1]1

or, using conditions (16), (17), and (24),

d Ty m+-1
_ B 9
A,J_m ax[ B m’;lxksm)]dxdr +§ { l—— ﬁa;lwh(r)]dxdr (27)
0

Substituting relatioms (21), (14), (16)-(19), (23), and (24) into equality (27), we ob-
tain, after some transformations,

S e (2 o+ f o[ S (2] o

oT
h=—1

(28)

It follows from equality (28) that the formula for the components of the gradient vector of
functional (6) has the form

o T R

0

h=—1,0, ..., m4 1. (29)

If the gradient of the total functional is known, one can construct an iteration al-
gorithm for the solution of the inverse problem for the coefficients. According to the meth-
od of conjugate gradients, the approximations are constructed from the formulas

kﬁ"'l:xg—i—apgﬁ, b=—1,0,...,m+1, p=0,1, ..., (30)

where -
gl =— 1"+ bt

m+1 m4-1 )
ﬁo — 0 ﬁp 2 (J ’(p) —J (P—l))J (p) / kz ‘(Jh P )Z-

h=-—1
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Fig., 1. Reconstruction of the
temperature dependence of the
thermal conductivity coeffi-
cient for "exact" input data.
Curve 1 shows the exact values,
and the points 2 are the recon-
structed values (m = 3, p = 25).

The coefficient ap determines the step at the p-th iteration, and can be calculated from

the condition N
minJ (A + aG”).
[0

In the present problem, the quantity op can be estimated explicitly. It can be shown (see,
e.g., [5]) that the following relation holds:

jm[T(d, T, M)— (D9, 1)dv
oy = —— - —. (31)
5‘ 19 (d, 7)i2dv

0

The iteration process is now constructed as follows. The starting approximation of the
required parameters is specified, and one solves problem (8)-(13). ¥rom the conjugate prob-
lem (21)-(26), the calculated approximate temperature field is used to calculate the gradi-
ent of the total functional from formulas (29). After solving the problem for increments
(14)-(19), one determines the rate o, and relations (30) are used to find the new approxi-
mation. The process is subsequently repeated for the next approximation, etc., The process
should be terminated according to the deviation [4], i.e., when the condition

J < 82
Tm
holds, where 62:~5'0?(T)d1 is the integral error of temperature specification at point x =
0
d, and of(r) is the rms deviation of the input temperatures.

It should be noted that the above inverse heat—conduction problem is incorrectly formu-
lated. The effect of the incorrectness can manifest itself in the instability of the numeri-
cal solution. To obtain stable results, one can use the principle of step regularization
[1]. 1In this case, the regularity of the solution is achieved by decreasing the number of
divisions of the temperature interval on which the required function A(T) is defined.

The above algorithm for the reconstruction of the thermal conductivity coefficient from
the non-steady-state temperature measurements was realized in the form of a computer program
which we have used to calculate a number of methodical examples. The boundary-value prob-
lems (8)-(13), (14)-(19), and (21)-(26) were numerically solved using an implicit approxi-
mation scheme. In the process of solution of the problem (8)-(13), we used iterations with
respect to the coefficients [6]. Some of the obtained results are shown in Fig. 1.
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The boundary temperatures and the input data for the solution of the inverse problem
were the temperatures obtained from the solution of the forward heat-conduction problem for
boundary conditions of the second kind and a given thermal conductivity coefficient A(T) =
0.5 + 2 T?. The remaining input data were chosen as follows: qy = 1, q2 = 0, C(T) = 1,
b=1,d=0.5 and 1 = 1.

In the spline approximation of the required function A(T) we made three divisions of
the temperature interval [Tpin, Tpayx]e. The calculations were carried out on the difference
net ny X ng = 20 x 20, For the 25 iterations we needed about 5 min of the processor time of
the computer BESM-6. In this example, the problem was solved using exact data. The start-
ing approximation for the heat-conduction coefficient was taken as a constant, and equal to
Ao = 0.75. The obtained results demonstrate the sufficiently high efficiency of the sug-
gested algorithm.

NOTATION

T, temperature; C(T), volume heat capacity; A(T), thermal conductivity coefficient; x,
d, and X, coordinates; T, time; b, right-~hand boundary along x; Ty, duration of the process;
f;(t), input temperatures; 4(x, T), temperature increment; A, k =1, 0,..., m + 1, parame-
ters in the spline approximation of the function A(T); B(T), B spline; a and B, parameters
of the conjugate gradients method; J', gradient of the total functional; y(x, T), conjugate
variable; 6%, integrated error of the input data; and p, number of iterations,
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CONDUCTIVITY OF MULTICOMPONENT HETEROGENEOUS SYSTEMS

G. N. Dul'nev, B. L. Muratova, and V. V. Novikov UDC 536.2

A method is proposed for calculating conductivity of a multicomponent hetero-
geneous system, taking account of its structure.

The conductivity A of a heterogeneocus system is the coefficient in the linear relation
between the average flux‘<]>, and the average value of the gradient <<Y7¢>> producing it:

(j> =—A(vye), <V¢>:7§V¢idvi- (1)
’ v

For local regions occupied by the i-th component the following relations are valid:
;, = —N; ch,, le]l = 0. (2)

Methods of calculating the conduct1v1ty of two-component heterogeneous systems as a function
of the conductivities of the components A; and their volume concentrations have been devel-
oped in adequate detail [1, 2].
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